Postdoc Microengineered Devices for Organ-on-chip Platforms – DelftUniversityofTechnology(TUDelft) – Delft

  • Delft


Organ-on-chip technology is revolutionizing the potentiality of in-vitro models to become realistic recapitulations of in-vivo (patho)physiology, thus revoluzionizing pre-clinical drug development and screening. Most human organs and tissues have received an organ-on-chip treatment, whereby the engineered tissues and miniature organs are embedded in realistic synthetic microenvironments providing stimulation and continuous monitoring. A great variety of organ-on-chip devices is therefore available to tailor the technology to the specificities of the organs. However, such variety should not hamper the capacity to interconnect the devices and their ease of use. Modular organ-on-chip platforms are convenient vehicles to combine the variety of organs-on-chip under a standard user interface, as particularly represented by the Smart Multi-Well Plate developed in the European Moore4Medical program.

As part of a multi-partner follow-up European project, this research work will focus on developing microengineered devices for the next generation of the Smart Multi-Well Plate. The envisioned devices include microelectrodes arrays and other microfabricated solutions for electrical monitoring of tissue conditions, by means of transepithelial electric resistance and impedance spectroscopy measurements. In collaboration with the international project partners, the research will enable the exploration of innovative design solutions compatible with system constraints and requirements, the fabrication of the prototype devices, their functional characterization, and their integration within the next Smart Multi-Well Plate embodiment. The goal will be to extend and complement the functionality of the Smart Multi-Well Plate and hence demonstrate its suitability to successfully run models of a selected set of organs.

Lees hier meer